
NPS 61-089-012

NAVAL POSTGRADUATE SCHOOL
Monterey, California I L i L- Id

CT
CD

I-L

AMSHRCSIS

A SIMULATION OF OPTICAL PROPAGATION THROUGH

ATMOSPHERIC TURBULENCE USING TWO-DIMENSIONAL
FOURIER TRANSFORM TECHNIQUES

by

Jeffrey L. Turner

June 1989

Thesis Advisor: Donald L. Walters

Approved for public release; Distribution is unlimited.

UPrepared for:

Weapons Laboratory/ARCA
Kirtland Air Force Base,
New Mexico 87117

90 01 10 149



NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin Harrison Shull
Superintendent Provost

This report was prepared in conjunction with research
conducted for the Air Force Weapons Laboratory, Kirtland Air
Force Base, New:Mexico.

Release by:

Gordon E. Schacher
Dean of Science and Engineering



SECURITY CLASSIFICATION OF THIS PAGE
Form Approved

REPORT DOCUMENTATION PAGE OMBNo 0704_poed

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT
SDIApproved for public release;
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE distribution is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

NPS 61-089-012

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
(If applicable)

Naval Postgraduate School 61 Weapons Laboratory
6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City State, and ZIP Code)

ARCA
Monterey, California 93943-5000 Kirtland Air Force Base

New Mexico 87117
8a NAME OF FUNDING /SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)
Weapons Laboratory ARCA
Bc. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

Kirtland Air Force Base PROGRAM PROJECT TASK WORK UNIT
New Mexico 87117 ELEMENT NO NO I NO ACCESSION NO

11 TITLE (Include SecurityClassification) A Simulation Of Optical Propagation Through
Atmospheric Turbulence Using Two-Dimensional Fourier Transform Techniques

12 PERSONAL AUTHOR(S)
Turner, Jeffrey L. in conjunction with Donald L. Walters
13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 5 PAGE C(N0'J
Master's Thesis IFROM ____TO ___June 1989 79
16 SUPPLEMENTARY NOTATION The views expressed in this thesis are those of the
author and do not reflect the official policy or position of theDepartment of Defense or the U.S. Government

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP -Optical propagation, Atmospheric turbulence,-
_I Coherence length; Huygens-Fresnel theory

19 ABSTRACT (Continue on reverse if necessary and identify by block number) -Understanding turbulence degra-
dation of electromagnetic wave propagation is essential for efficient
operation of laser weapons, target designators, and imaging systems.
Random atmospheric refractive index inhomogeneities alter the phase and
amplitude of electromagnetic waves.

This thesis attempts to model atmospheric turbulence effects by using
filtered Gaussian phase screens to represent the random nature of refrac-
tive index changes. The simulation uses two-dimensional 512 x 512 fast
Fourier transform (FFT) techniques with extended Huygens-Fresnel
principles performed on a desk top computer.

Simulation verification was accomplished by comparing calculated and
theoretical spatial coherence lengths, P, . Phase only screens produced
coherence lengths that were 30% larger than theoretical values. By using
random phase and amplitude screens, the calculated coherence lengths

20 DISTRIBIJTION ,AVAILARILITY OF ABSTRACT 21 ABSTRACT SECUR T' C ASS I (AT,()',

g]UNCLASSIF'ED'UNLMITED L] SAME AS RP- 0l DTIC USERS UNCLASSIFIED
22a NAME OF RESPOTNSIBE INDiViDJAL 22b TELEPHONE (Include Aea Code) 221( C

;;  
%

Donald L. Walters (408) 646-2267 61We
DDForm 1473, JUN 86 Previous editions are obsolete _S C P C" A , .....

S/N 01 02-LF-O14-660 3
i



UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

Block 19 Continued

.agreed to within 3 % of theoretical values. Saturation of the
normalized intensity variance, 02/12 , occurred for increasing
turbulence using a single phase-amplitude screen.

For

PT I ( ,:' ,

ly !' tr '2 :' '' f . . . .
1 .,_A

DD Form 1473, JUN 86,.>, -- ., .7>F-Ca-2\ F) TI -1 A3 E

±i



Approved for public release; distribution is unlimited.

A Simulation Of Optical Propagation Through
Atmospheric Turbulence Using Two-Dimensional

Fourier Transform Techniques

by

Jeffrey L. Turner
Lieutenant, United States Navy

B.S., Stephen F. Austin State University, 1983

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN PHYSICS

from the

NAVAL POSTGRADUATE SCHOOL
June 1989

Author: /~6( 724~
Jeffrey t. Turner

Approved by: _________0 ___ _ __ _

bonald L. Walters, Thesis Advisor

Edmund A. Milne, Second Reader

Karlheinz oehler, Chairman,
Department of Physics

Gordon E. Schacher,
Dean of Science and Engineering

±i



ABSTRACT

Understanding turbulence degradation of electromagnetic

wave propagation is essential for efficient operation of laser

weapons, target designators, and imaging systems. Random

atmospheric refractive index inhomogeneities alter the phase

and amplitude of electromagnetic waves.

This thesis attempts to model atmospheric turbulence

effects by using filtered Gaussian phase screens to represent

the random nature of refractive index changes. The simulation

uses two-dimensional 512 x 512 fast Fourier transform (FFT)

techniques with extended Huygens-Fresnel principles performed

on a desk top computer.

Simulation verification was accomplished by comparing

calculated and theoretical spatial coherence lengths, P0.

Phase only screens produced coherence lengths that were 30%

larger than theoretical values. By using random phase and

amplitude screens, the calculated coherence lengths agreed to

within 3% of theoretical values. Saturation of the normalized

intensity variance, 02/12, occurred for increasing turbulence

using a single phase-amplitude screen.
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I. INTRODUCTION

Turbulence in the atmosphere has a detrimental effect on

the propagation of electromagnetic waves at optical

wavelengths. Minute changes in the refractive index of the

atmosphere along the path of the wave cause perturbations in

the wavefront in both intensity and phase. Consequently,

random atmospheric density fluctuations degrade the

performance of optical imaging systems. Understanding this

phenomenon is essential for future endeavors in laser weapons

and designators, as well as imaging systems.

This thesis attempts to model the effects of atmospheric

turbulence using the extended Huygens-Fresnel principle. This

theory considered both Fraunhofer and Fresnel propagation

although the simulation focused on a single phase screen using

the Fraunhofer approximation.

A Rytov approximation filtered, Gaussian distributed,

random phase and amplitude screen simulated the effects of

turbulence on an optical beam. The magnitude of turbulence

of this screen was proportional to the index of refraction

structure parameter, C.2 .

The simulation code used two-dimensional fast Fourier

Transform (FFT) algorithms extensively to model optical wave

propagation in the Fraunhofer regime.



Accuracy of the simulation was checked by comparison of

calculated and theoretical coherence lengths, Po, which were

obtained from the e-I point of the atmospheric mutual

coherence function (MCF). Another check verified that

intensity variance saturation occured for an increase in

turbulence, as measured experimentally and predicted by

theory.
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II. BACKGROUND

A. STATISTICAL DESCRIPTION OF ATNOSPHERIC TURBULENCE

1. Stationarity, Homogeneity, and Isotropy

Most theorems involving random processes require that

the functions satisfy certain restrictions. "Stationarity"

implies that the mean value of the random function does not

change with time. "Homogeneity" implies that translations in

x, y, and z coordinates (a Galilean coordinate transformation)

do not affect variables of the random function. "Isotropy"

means that the random function is independent of any

rotational coordinate transformation. (Ref. 1]

The last two conditions imply that the statistical

representation of the random function for two points f(ii) and

f(r2) depend only on the magnitude of their separation

i 2 - I j. [Ref. 11

If these three restrictions only hold for a local

volume of space, L, the random field is said to be locally

stationary, locally homogeneous, and locally isotropic for

F1 - F2 L.

Turbulence of the atmosphere is a process that can be

best described by a random function. Minimal violations of

stationarity, homogeneity, and isotropy occur if the

neighborhood is sufficiently small, less than some outer scale

length L. (Ref. 1]
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2. The Structure Function

Because of their nature, random functions, f, can best

be described stochastically. The simplest moment of f is the

mean value, (f>.

Another common parameter used to represent a random

function is the variance, a', defined as

02 = < ( f(s) - <f(f)> )Z >. (2.1)

In a physical random field, such as atmospheric

turbulence, the mean value, (f(r)>, is difficult to ascertain

because of trends in the mean as well as variations in spatial

position, vertically and horizontally. Therefore, the mean

and variance are awkward parameters for describing a real,

random, atmospheric field. To resolve this difficulty,

Kolmogorov introduced the structure function

Df (r) = Dt(i2-i) = ([f(Ft) - f(F2 )] 2, (2.2)

which resembles the variance at first glance. (Ref. 2] The

structure function is an ensemble average taken over all

possible point pairs ri and F2. (Ref. 2]

Through dimensional analysis, and assuming isotropy,

Kolmogorov deduced a relation between the structure function

and the distance between the sampling points,

Df(r) - C.2  rs/3  (2.3)
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which holds over a limited volume, called the inertial

subrange. [Ref. 2J Although developed for the velocity field

v, Equation 2.3 "lso holds for certain atmospheric functions

called conservative passive additives.

Conservative passive additives are quantities that

play no part in the turbulence of the medium. Temperature is

not such a quantity, but potential temperature, which corrects

for the adiabatic change in temperature with altitude, is.

Therefore, the relation

DT(r) = CT2 r2/3  (2.4)

holds within the inertial subrange where T is the potential

temperature.

In examining problems of optical propagation, the

index of refraction is the essential parameter. To express

the index of refraction as a conservative passive additive,

it is useful to manipulate the following relation

n = 1 + 77.6(1 + 7.52 x 10-3/X2) (P/T) x 10-  (2.5)

where X is the wavelength of the radiation in Um, P is the

atmospheric pressure in mb, and T is the atmospheric

temperature in K. (Ref. 3] The differential of Equation 2.5

is

dn = - 79 x 10 - 6 P dT/T2  (2.6)

5



for red light (X - 0.6 pm) after ignoring the dP term

(isobaric turbulence). Since potential temperature is a

passive additive, the index of refraction is also. Using

Equation 2.6 to express the index of refraction structure

parameter in terms of the temperature structure parameter

gives

Ds(r) = C.2 r2 /3 = (79 P/T2 x 10-6)2 CT 2 r2/9 (2.7)

[Ref. 3].

3. The Correlation Function and Power Spectral Density

Expanding Equation 2.2 gives

Df(r) = (f2(ra)> - 2<f(ri)f(rz)> + (f2(r,)>. (2.8)

But if we assume an homogeneous medium, then < f'(r) > is the

same for any point r, assuming <f(r)> = 0. The structure

function becomes

Df(r) = 2 Bf(0) - 2 Bf(r), (2.9)

where Tatarski defined the correlation function, Bf, as

Bf(r) = < f(ii) f*(i2) > (2.10)

in a stationary, homogeneous, and isotropic medium. [Ref. 2]

Using stochastic Fourier-Stieltjes integrals, Tatarski

developed a relation for the three-dimensional power spectral

density function, *(f), as the Fourier transform of the

correlation function. Writing this in freqency (f) form as

opposed to radian freqency (K form preferred by Tatarski,

6



(f) exp (-2nifli) B(r) d8 f, (2.11)

and conversely,

1% Bf(r) = I exp (-2nif.ri) (f) df. (2.12)

(Ref. 2]

Using the fact that the correlation function is even, and

using relations (2.7) and (2.9), the structure function for

the Kolmogorov power spectral density is

4be(f) = 1.303 C. 2  f-11/3 , (2.13)

for the Kolmogorov power spectral density. This equation is

analogous to

Obn(K) = 0.033 C.2 KLII/S (2.14)

an expression developed by Tatarski in K space that is seen

in many publications. [Ref. 2]

B. ELECTROMAGNETIC PROPAGATION THROUGH TURBULENCE

1. The Wave Equation

Central to any study of electromagnetic propagation

are the four equations of Maxwell, presented here in Gaussian

units

V • H = 0, (2.15)

V x = -ikn2E, (2.16)

7



V (n'E) = 0, (2.17)

V x i - 1ki, (2.18)

for the assumptions that the medium has zero conductivity,

unit magnetic permeability, and sinusoidal dependence.

Taking the curl of Equation 2.18 gives

V x (V x E) = V x (ikg). (2.19)

Using a vector identity and Equation 2.16, Equation 2.19

becomes

-V2E + V(V • E) = k"n2E. (2.20)

Expanding Equation 2.17 gives a relation for

V * E, which when inserted into Equation 2.20 gives the wave

equation

V2E + k2n2E + 2V[E • V(log n)] = 0. (2.21)

If the wavelength of the electromagnetic wave is small

compared to the dimensions of the refractive inhomogeneities,

then the 2VIE • V(log n) term is negligible. In this case,

the wave equation reduces to the simple form

V2E + k2n2E = 0. (2.22)

[Ref. 3]

2. The Born Approximation

One method of solving the wave equation, employed by

both Tatarski [Ref. 2] and Clifford (Ref. 3], is the method

of small perturbations or the Born approximation. This method

8



expands the electric field and index of refraction as a power

series

E = Eo + Ei + , (2.23)

n = 1 + ni + ''', (2.24)

where Eo is a constant in time, and El and ni are time

varying.

Inserting these two relations into Equation 2.22 and

equating same order terms gives

V2 Eo + k 2 Eo = 0, (2.25)

V2 E1 + k2E 1 + 2nik 2 Eo = 0, (2.26)

ignoring all second and higher order terms.

Assuming that the electromagnetic wave propagates in

the z-direction and E o = exp(ikz) , then Equation 2.26 becomes

V2 E1 + k2 E1 + 2nik 2exp(ikz) = 0. (2.27)

Clifford solved this wave equation for Ei by utilizing

a Green's function. The solution is the convolution of a

plane wave Green's function with the source term, shown here

in scalar form

1 r exp[ikli-P'l]

Ei (i) =- J [2k 2 ni (F') exp(ikz')] d3 F,

(2.28)

where F is the position of a specific point in the image plane

and F' is the postion of specific source point. (Ref. 3]

9



Figure (2.1) shows the coordinate system used to express the

solution to the wave equation for propagation between planes

i' and )' to z and p.

For normal propagation situations, i-z'l f R >> h-

vi so that Equation 2.28 expands into the form

1 r exp(ikR [1 + 2-/2R2 + ***

El (i) = -__

4n JV R [1+ I-' 2 /2R 2 + ...

X [2k 2 ni(P') exp(ikz')] d f, (2.29)

using the binomial expansion. Dropping those terms consistent

with the Fresnel approximation in Huygens-Fresnel optics

theory, this equation reduces to

k2 exp(ikz)
E i{ ) = 2nR f expfik l F - ' ' 2 /2R I n ( ) d ,

2nR
(2.30)

which is known as the Fresnel diffraction formula. [Ref. 3]

3. The Rytov Approximation

Another method of solving the wave equation, also used

by both Tatarski and Clifford, is the method of smooth

perturbations or the Rytov approximation. This technique

assumes that the electric field is of the form

E = exp(fO) = exp(X+iS) = A exp(iS). (2.31)

10
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Figure 2.1 Aperture and Image Plane Geometry.
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Using power series expansions for the electric field,

Equations 2.25 and 2.26 still hold. Placing Equation 2.31

into these two gives

(VE)/E + k'n2(r) - 0. (2.32)

Tatarski shows that this method gives the same results as the

method of small perturbations but the range of validity is

larger than for the Born approximation. Equation 2.26 holds

as long as V-i is small compared to A. (Ref. 2]

C. NUYGMS-FRsNEM TEORY

Another way of obtaining a relation for the electric field

amplitude at the observation plane, is by extending the ideas

of the Huygens-Fresnel theory to include a random phase term.

The Huygens-Fresnel theory offers this solution for the

electric field seen in the observation plane

E( ) - k E ) exp(ikl-P'I) dp '. (2.33)

2 n fe~t

[Ref. 5]

Lutomirski and Yura develop an extension of the Huygens-

Fresnel idea which incorporates a random phase term which is

equivalent to the form used in the Rytov approximation,

exp(W), where is a complex phase. [Ref. 4] This extended

integral is

E(F) =- ik f E(i') exp(d(i)) exp(ik[i-i'I) dD'

(2.34)

12



In the geometrical optics limit, (r) becomes the optical

phase

((r) - (1) dz. (2.35)

Expanding O into a power series, Equation 2.35 reduces to

Equation 2.30 as developed by Tatarski and Clifford.

D. MUTUAL COHERICE FUNCTION

In trying to get a quantitative measure for turbulence,

Lutomirski and Yura (Ref. 41 examined the average intensity

of the wave at the observation point. The average intensity

at i is defined as

(l(r)) = (E(ri) E*(F2) >. (2.36)

From Equation 2.34:

(I(r)> = < (kt/4n') E(ft')E*(F2') exp[V(r) + O*(:)]

X exp[ik( i%-Fi'l - irZ-,2'i)1 dpi dt2 >

Ift -ft ' I : Y ' 1
(2.37)

Picking out only the time-dependent portion of this result,

the entire integral reduces to evaluating

( exp[41(fi) + V*(f 1 )] >. (2.38)

This term is the atmospheric mutual coherence function (MCF)

which contains the elements of the propagation through

turbulence.

Lutomirski and Yura (Ref. 41 relate the atmospheric MCF

to the wave structure function, D, by the relation

13



MCF(p ) = <exp[ (Ft) + V*(F 2 )]> = exp[-D(p )/2] (2.39)

where Dy) = Dx(p) + Ds(p) from the Rytov relation /= X+iS

or

MCF(P) = exp[-(p//po):/ 3 ]. (2.40)

where

o= 1.46 k2 /: Cn2 dz ]-/5. (2.41)

and k is the wavenumber. Cn2 is the refractive index

structure parameter defined by Equation 2.7, and R is the

distance of propagation through the atmosphere. The coherence

length, P o, is defined as the distance where transverse

spatial coherence of the wave drops to the e-1 . [Ref. 1]

E. THE DIFFRACTION INTEGRAL

Like Lutomirski and Yura, Roberts [Ref. 6] begins with the

Huygens-Fresnel integral for the propagation of light waves

after making the Fresnel approximation (z-z'j = R >> 1-P'1)

z(i = -ik dp ' E(F') expfik[R2+ I '-1 I]1/2- (2.42)

In this expression, k is the wavenumber and the notation is

the same as shown in Figure (2.1).

Employing the standard practice of expanding by the

binomial expansion and neglecting smaller terms gives

E(i) = -ik exp[-ikR] /dp ' E(F') explik i  '- 12 I.
2nR s2R

(2.43)

14



Since the exponential term outside the integral doesn't affect

intensity measurements, it can be neglected. Expanding the

quadratic term gives the relation

E(P) =-1k fdp ' E(') expILk [p,2, 2 9. + pl]I
2nR ps 2R [p 2-2+p

-k exp ( ik 12 ] Idp' Er') exp [ik ] exp[-ikR
2R 2R J2R2R

(2.44)

This is called the convolution form of the Fresnel diffraction

integral which differs from the Fraunhofer approximation only

by the quadratic phase term exp[*kf...]. [Ref. 6]

If we denote the Fourier transform of E(r) as E(f), then

E(ff) = dp exp(-2nif., ) E(i). (2.45)

Inserting E(P) as defined in Equation 2.43, gives

E(f) = -ik d ' E(') dp exp(2nif.,) expIik, ' 1,o2 2_

(2.46)

Changing variables to i = - , the electric field

spectrum becomes

E(f) =-k d ' E(I') exp(-2nif, )

X fdq exp(-2nif, q) exp(jk q2 ). (2.47)
2R

The q integral is shown to be the Fourier transform of the

Gaussian function

15



2niR exp(-2nziR). (2.48)

k k

[Ref. 6] Substituting this function into Equation 2.47 gives

E(f) - exp(-2iRP) fdo ' E(F') exp(-2nifi-P), (2.49)
k J

which is the inverse transform of what we sought,

E(F) = fdf exp(2nif.i) exp(-2nLiR 2 )
k

X fdp ' E(F') exp(-2nif.3 ) (2.50)

This is the transfer form of the Fresnel diffraction integral.

(Ref. 6]

Equations 2.44 and 2.50 are two different forms of the

diffraction integral that are useful for two types of wave

propagation. The convolution form, Equation 2.44, is best

suited for long distance propagation (Fraunhofer regime) since

R is in the denominator of the exponential term. The transfer

form, Equation 2.50, is best suited for short distance

propagation since R is present in the numerator of the

exponential term. [Ref. 6]

16



III. NUMERICAL SIMUATION

A. SIMULATION HARDWARE AND SOFTWARE SPECIFICS

This numerical simulation modeled the propagation of an

electromagnetic wave through a random turbulent medium. The

procedures for this simulation required the creation and

manipulation of multiple two-dimensional, 512 by 512, single

precision, phase screens, requiring a minimum memory of

several megabytes.

A COMPAQ Deskpro 80386-20 computer configured with a 16

megabyte RAM and 64 megabyte hard drive met hardware

requirements. The computer also had EGA-VGA graphics and both

HP Laser Jet II and Panasonic KX-P1092i printers. A Weitek

1167 math coprocessor increased execution speeds of the 20 Mhz

80387 coprocessor by a factor of 3-4.

The software requirements for writing the simulation code

were met with the MicroWay 32 bit NDP FORTRAN-386 compiler

and the Phar Lap operating system extender. It was chosen

over the Science Applications International Corporation's SVS

Fortran-386 compiler which had 10-20% faster prcgram execution

times but numerous bugs present in the graphics routines.

Unfortunately, due to limitations of version 1.4e of the

NDP Fortran-386 compiler, the full graphic capabilities of VGA

were not supported, so EGA graphics were used for screen

17



displays. Hardcopy graphs and plots were accomplished using

Grapher and Surfer programs from Golden Software.

B. REQUIRED ALGORITHMS

For the successful operation of such a model both the

random number generator and the two-dimensional fast Fourier

transform (FFT) routines needed speed and accuracy. These

will be discussed in detail in the following sections.

1. Random number generator

The effects of turbulence on the propagation of an

electromagnetic wave are of a random nature. To emulate this

random nature required a pseudo-random number generator

algorithm. The minimum criteria for a quality random number

generator was that the products be: (1) sufficiently random,

(2) reproducible, and (3) rapidiy obtained.

The NDP FORTLAN compiler did not come equipped with a

random number generatnr, so an algorithm of the linear

congruent type especially designed for 32 bit machines was

implemented as a subroutine attached to the main program.

This had the benefit of not binding this portion of the code

to a specific machine setup. This random number generator

algorithm came from Dr. Milne, who obtained it from class

notes prepared by Dr. Harrison [Ref. 7]. This algorithm

appears as subroutine RAN (Appendix A) in the simulation code.

The first criteria, that the generator produce numbers

sufficiently random, was hard to quantify. A series of tests

18



exercised the statistical independence of succeeding numbers.

There are many such tests that exist, the most common of which

is the "Chi-Square" test. The following is a list of all

tests used to check the quality of the random number generator

algorithm:

1. Freauency Test. This tests the uniformity of the
sequence of numbers.

2. Serial Test. This tests the two-dimensional uniformity
of the sequence of numbers.

3. Runs Up and Down Test. This tests to see how long
sequences of random numbers are that either go
successively up or down.

4. Lacced-Product Test. This tests for correlations
between random numbers Ri and Rjj where j is the given
lag value. A lag of 3 is especially difficult to pass.

5. Repeat Test. This simple qualitative check is to
determine how long the sequence of random numbers
becomes before the first number is repeated.

6. Scatter Plot Test. This is another qualitative test
where random numbers plotted on a x-y plane are visually
checked for correlation.

These six tests were performed for a variety of seed

values to determine which gave the best performance. Results

of the first five tests for two good seeds can be found in

Table 3.1.

Choosing the same initial seed value gave

reproducibility of the random numbers. The algorithm's simple

two lines of code assured rapid execution.
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TABLE 3.1 RANDOM NMB ER GENERATOR TEST DATA

This table provides the results of statistical tests of
the random number generator algorithm. The X2 values came
from the Chi-Square table in Bevington [Ref. 11]

The results of the Lagged Product test correspond to the
theoretical mean, UT, the calculated mean, U, the theoretical
standard deviation, aT, and the calculated standard deviation.

Degrees of
Test Seed Freedom X2 Probability

45739 9 4.0 91 %
Frequency

94377 9 5.1 82 %

45739 20 16.6 70 %
Serial

94377 20 10.2 96 %

Runs 45739 6 11.7 2
Up and
Down 94377 5 2.4 80

Test Seed Ii? OT 0

45739 0.250 0.230 0.088 0.092
Lagged
Product 94377 0.250 0.265 0.088 0.086

2. Fast Fourier Transform

Since the most often used algorithm in the simulation

was the Fast Fourier Transform (FFT), efficiency was critical.

Two different routines were compared.

The first FFT routine considered was a package offered

by NDP of one- and two-dimensional machine language FFT

routines designed for easy linking by the NDP FORTRAN

compiler. This package had routines available for real and

complex arrays.
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The second FFT routine considered was a simple real

array subroutine coded by Dr. Walters from a BASIC

demonstration package provided by Infotek.

Each FFT routine was compared for numerical output and

speed of operation for the one-dimensional case. As expected,

all routines were virtually identical in numerical output.

However, speed of operation differed widely, as seen in Table

3.2.

TABLE 3.2 FFT SPEED OF OPERATION COMPARISON

This table contains results of FFT execution time
comparison between NDP machine language routines and Dr.
Walters' subroutine. Since NDP FORTRAN does not have a timing
function with sufficient accuracy, execution times listed are
mean times found from several runs, timed by stopwatch.

Array NDP Routines Walters' Routine
Size CFFT RFFT w/o & w/ Weitek

1-D field size time(s) time(s) time(s) time(s)

213 2.60 1.45 2.84 1.20
214 5.27 2.88 5.86 2.32
215 10.94 5.84 12.27 4.94
216 22.78 12.05 25.90 10.26
217 47.61 25.02 54.53 21.55

The differences in run time for the two NDP machine

language routines were due to the CFFT routine being more

cumbersome in converting repeatingly between real and complex

arrays. The compiled subroutine was significantly faster than

both CFFT and RFFT NDP machine language routines unless the

Weitek was deactivated. Using a subroutine enclosed within
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the main program had the additional benefit of not being

machine dependent. Therefore, it was decided that Dr.

Walters' subroutine would be used for all FFTs needed in the

simulation code. Conversion of this subroutine for two-

dimensional use was relatively easy. The NDP two-dimensional

FFT routines never worked correctly.

A FFT "breaks down" a function into its cosine and

sine constituents (real and imaginary terms, respectively).

The range of spatial frequencies represented in a FFT depend

on the array size chosen. The minimum frequency is fsin = 1/W

and the maximum frequency is foax = n/W, where W is the

physical width of the array and n is the number of sampling

points across the array. When energy at frequencies near

these cutoff values appeared, problems developed due to the

discrete nature of the FFT.

One problem exists in representing spatial frequencies

smaller than fmi, due to the high amplitude, low frequency

"tilt" of the f -11/3 filtered wavefront. Since a tilted

straight line approximates a cosine or sine function for only

a small region, it helps to make the wavefront smaller than

the FFT array size. Hence, to help represent lower

frequencies in the simulation coding accurately, an aperture

array was a user chosen variable smaller than the FFT array

size.

Another problem that manifests itself is "aliasing",

which occurs when high frequency features of a function are

22



missed by having too few sample points. This means that

important information for the function present in the

frequencies greater than fmax are folded back and appear at

lower frequencies. Choosing the distance between sample

points smaller than the coherence length of the propagating

electromagnetic wave, found theoretically by Equation 2.39,

alleviated this problem.

C. SIMULATION DESCRIPTION

1. User defined quantities

For operation of the simulation program, the user had

the option of varying several quantities directly from the

keyboard:

1. Array size. This can be varied up to a maximum of 512
by 512 points.

2. Aperture sampling points. This can be varied up to a
maximum of 512 by 512 points. Ideally it should be
smaller than the array size to avoid "tilt" effects, but
large enough to avoid "aliasing" effects. A size one-
fourth to one-half the array size works best.

3. Aperture shape. A choice of square or circular aperture
was provided.

4. Seed. The pseudo-random number generator required a
five digit input seed. Table 3.1 lists two quality
seeds. All data was obtained using the seed 94377.

5. Turbulence Parameter. Any value of CD2 above zero can
be chosen. Typical values of C22 were 10-17 through
10-13 m-2/3

6. Wavelength. Any value of wavelength for the electro-
magnetic wave can be chosen. A value of 0.6 pm was used
throughout.

7. Distance. This was the distance from the aperture to
the observer. This simulation used I km.

23



8. Aperture width. Adjustable to ensure that "aliasing"
effects do not occur for a specific choice of Cos.
Typically, a 100 mm aperture was chosen with a path
length of 1 km.

For the accumulation of multiple data points for

statistical purposes, a slightly different version of the

program read user choices from a disk file.

2. Aperture Mutual Coherence Function

Computing far-field diffraction patterns of intensity

for an electromagnetic wave through the aperture with no

turbulence gave the Mutual Coherence Function (MCF) of the

aperture. Since we assumed a point source at infinity, the

electric field wave front was planar at the aperture. The

electric field that passes through had a value of one within

the boundaries of the aperture, and a value of zero outside

the boundaries. The FFT subroutine computed the diffraction

pattern, the electric field present at the image plane. The

conjugate square of this electric field was the intensity

field that would be seen by an observer. Taking the inverse

FFT of the intensity field gave the aperture MCF, which was

identical to the autocorrelation of the aperture function.

3. Phase screen generation

Simulation of effects of turbulence requires that the

aperture planar electric field be multiplied by the phase

screen. Two methods exist to create the phase screens.
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a. Classical method

In this method n2 Gaussian distributed random

numbers filled a n by n real array. Since the pseudo-random

number generator RAN produced uniformly distributed numbers,

a subroutine GAUSS transformed them to a Gaussian distribution

with unit variance, Knuth [Ref. 8]. This subroutine appears

in Appendix B. Taking a direct FFT creates two Gaussian

distributed arrays, phaser and phasei, which are the real and

imaginary spectral amplitudes of the original random array.

Since these two arrays are in spatial frequency space,

multiplication by Equation 2.13 occurs. An inverse FFT

returns the filter to real space. Because of the symmetry of

the filter, discussed later, only one array in real space

results, containing all n2 pieces of information produced by

the subroutine RAN.

b. Martin and Flatt6 method

In this second method suggested by Martin and

Flatt6 [Ref. 9], two n by n arrays, called phaser and phasei,

are each filled with n2 Gaussian distributed random numbers.

These are considered the real and imaginary components in

spatial frequency space. Filtering occurs as f-1/3 then an

inverse FFT returns the array to real space. Because no

information is lost in filtering, two arrays result, each with

n2 pieces of information. Only one of these arrays need be

used for the following simulation code. This method requires

twice the random numbers as the previous method but GAUSS

25



produces two random numbers and half as many two-dimensional

FFT steps are required. For use in Fresnel propagation, where

multiple phase screens exist, this method is certainly the

most efficient.

4. Filtering

Phase screens need to be filtered in frequency space

to ensure the proper power law form. From Tatarski [Ref. 1]

and Martin and Flatt6 [Ref. 9], the correct form for the

filtering function, C, is

C = 2n k2 5Z ta (3.1)

where k is the wavenumber of the electromagnetic wave, 5z is

the slab thickness, and Ca is the power spectral density

function. Using Equation 2.13 for the power spectral density

function and the definition of wavenumber, k = 2n/X, gives

4f = 1.303 (2n)3  (1/\)2 Cn2 6, f -11/3 (3.2)

which is the filtering function used in the subroutine FILTER

in the simulation code. Arrays phaser and phasei are both

multiplied by the square root of Equation 3.2 to obtain a

factor for the real and imaginary amplitudes so that the

intensity has the proper f -11/3 power law.

Although this filtering scheme looks simple, a few

subtle points make the process much more complicated than is

immediately evident. In fact, perfecting this filtering

process constituted the major effort of this thesis.
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First of all, most of the relations developed in the

background references were in terms of the radian frequency

K. The FFT routine used was in terms of the spatial frequency

f = K/2n. Consequently, all relevant equations had to be

expressed in this latter form, requiring the tracking down of

many 2n terms.

Secondly, due to the two-dimensional isotropy of

turbulence, the correct filtering scheme is of a circular

nature. This means that the frequency seen in Equation 3.2

is really f = (if2 + fyZ)l/2, which is radial everywhere but at

the zero frequency (DC term) where it is has a value of zero

[Ref. 9).

For convenience of coding, the zero frequency should

be at the center of the arrays phaser and phasei. But in the

FFT algorithm, spatial frequencies are arranged in a manner

that is quite different. The zero frequency term is at the

upper left corner of the array. The Nyquist "folding"

frequency is present as a cross that divides the arrays into

four sections. So, prior to filtering, a shuffling of data

points is required as discussed by Brigham [Ref. 10) and as

seen in Figure 3.1. After filtering, an inverse shuffle

returns all frequencies to their previous locations.

Another important consideration in the filtering

process was that frequency units be correct according to the

physical dimensions of the aperture. This required that the

frequency array have a normalization factor of 1/NA where N
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is the total number of points across the array, and A is the

sampling interval (physical units between the aperture array

points).

5. Propagation

The Huygens-Fresnel techniques formed the basis for

the simulation's treatment of optical propagation. For

simplicity this simulation only considered Fraunhofer

propagation. The addition of subroutines to handle the

dynamics of Fresnel propagation should not be too difficult

other than the need for dynamic scaling of the numerical mesh

to account for diffraction spreading.

Martin and Flatt6 provided a procedure to simulate the

propagation of a wave in a turbulent medium. [Ref. 9]

1. Add the random turbulence effects to the electric field
distribution by meshing the aperture electric field
function with a random phase term exp():

E(F') - E(F') exp(0' ). (3.3)

2. Take the Fourier transform of the result of Equation 3.3
to obtain

E(f') = DFT{E( '). (3.4)

3. Add a term to the result of Equation 3.4 to obtain

E(f) = E(f') exp(-2niRP (3.5)
k

which is the exact same relationship as in Equation
2.48 that was described by Roberts as the
convolution form of the Fresnel diffraction integral.
[Ref. 6]

4. Take the inverse Fourier transform of Equation
3.5 to get an expression for the electric field
distribution at the image plane:
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E( ) = IFT I (N?) 1 (3.6)

If one were taking a multiple screen approach to

solving for the propagation of the wave as suggested by Martin

and Flatt6, the entire process would be reiterated for as many

segments of length R as required. In this numerical

simulation, only one segment was used for all propagations.

Adding this iterative section to the code would be a

straightforward modification if dynamic array sizes were

incorporated. [Ref. 6]

For distances of propagation where the phase front

cannot be assumed planar, an additional quadratic term would

have to be added at step 3 for the transfer form of the

Fresnel diffraction integral, as seen in Equation 2.50.

6. Atmospheric Mutual Coherence Function

We computed the atmospheric mutual coherence function

after meshing the random phase screen with the aperture

electric field function (after step 1 of the Martin and Flatt6

method). As with the aperture MCF, the next step was

computing the diffraction pattern using the FFT routine, which

represents the complex electric field that an observer would

see because of the aperture and the turbulence. The effects

of turbulence tends to spread out the diffraction pattern so

that resolution would be lost for any optical imaging system.

Taking the conjugate square of this diffraction pattern gives

the intensity field, which negates the additional exponential

30



term present in Equation 3.5. Taking the inverse FFT of the

intensity field gave the total mutual coherence function.

Dividing the total MCF by the aperture MCF leaves the

atmospheric MCF.

7. Coherence Length

As stated previously, the coherence length, pv, was

the distance transverse to the direction of propagation where

the spatial coherence of the <E'E> wave dropped to e-1 .

For a continuous plot of the atmospheric MCF, the

e-I distance could be picked off the curve easily. Due to

the discrete nature of the simulation, the MCF curve was not

continuous, but a series of points equal to the choice of the

pixel width of the aperture array. Therefore this simulation

used a linear interpolation routine to pick out values for

the coherence length as seen in the results of the following

section.



IV. RESULTS

In order to verify that this auraerical simulation produced

correct results, we had to find ways to check the validity of

the code. In the code, presented in Appendix C, there are

several checkpoints where the accuracy of the simulation could

be verified. The following sections discuss these checkpoints

in increasing order of sophistication.

A. APERTURE NCF

An initial point to check the accuracy of the simulation

code was to look at the mutual coherence function (MCF) of

the aperture. Since the code offered two choices of aperture

shape, square and circular, both were verified.

Using the two-dimensional FFT routine, the diffraction

patterns for 100 mm wide square and circular apertures were

calculated. The square aperture diffraction pattern in Figure

4.1a displays the familiar ((sin x)/x]2 form discussed by

Hecht with the correct maximum value and node spacing. [Ref.

5] The circular aperture diffraction pattern in Figure 4.1b

displays the Airy pattern derived from the Ji Bessel function

solution carried out by Hecht. (Ref. 51

An inverse 2-D FFT of each 100 mm wide aperture shape

produced the aperture MCP (identical to aperture

autocorrelation). The square aperture autocorrelation in

Figure 4.2a is the predicted triangle function. The
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Figure 4.1 Irradiance Diffraction Pattern Resulting From

A (a) Square Aperture And A (b) Circular Aperture.
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circular aperture autocorrelation in Figure 4.2b is as

expected for a "top hat" function.

The algorithm gave the correct MCF results which verified

the simulation up through the aperture MCF point.

B. FILTRING

The most crucial portion of the entire simulation code was

the correct frequency filtering algorithm. A succinct way of

verifying this came from examining the result of taking the

logarithm of both sides of Equation 3.3

logaff) = log1.303(2n)3(1/X)2Cn2 bZf -11/i)

which is

logi{fi =log(1.303(2n)3 (l/X)Cn25Z - (11/3)logffl, (4.1)

an equation for a straight line with slope of -11/3.

Figure 4.3 shows a plot of filtering function vs.

frequency f with a value 10-13 for Cn2 and a wavelength of 600

nm (red light) using the Martin and Flatt6 method of filtering

discussed earlier. A linear fit to the data points down to

the Nyquist frequency had a slope of -3.88. This was a

deviation from the predicted value of -11/3 (-3.83) by 1.3%.

Therefore, it appears that the filtering is being accomplished

correctly. The upturn of points occurs at the Nyquist folding

point that is present in the array scheme for the FFT routine.

C. ATMOSPHERIC MCF

An important place to check results of the simulation was

at the calculation of the atmospheric NCF. Following the
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procedure for calculating the atmospheric MCF outlined in

section III, first the diffraction pattern was calculated.

Figure 4.4a shows the diffraction pattern for a 100 mm wide

square aperture that results for red light (X - 0.6 um) with

Cnt - 10-16. Notice that the diffraction is only slightly

affected from what is shown in Figure 4.1a. As the turbulence

structure parameter Cn2 increased, the diffraction pattern

began to spread out more until it no longer resembles the

[(sin x)/x]' form it had without turbulence, as seen in

Figures 4.4b, 4.4c, and 4.4d for values of Cn2 - 10-15, Cns

10-14 , and Cn2 = 10-1a respectively. Figure 4.4c shows that

modest amounts of turbulence displace the image centroid, due

to low frequency tilting of the electric field. Since the

diffraction pattern is analogous to the intensity that would

be seen at the image plane, this clearly shows the blurring

of an image commonly seen looking through a turbulent

atmosphere as well as the "dancing" image effect at lower

levels of turbulence.

The atmospheric MCF was calculated for different values

of turbulence by the method described in section III using the

classical method of filtering. These are seen in Figures 4.5

for Cn2 values of 0, 10-16, 10-15, 10-14, and 10-13. With no

turbulence, the atmospheric MCF is a value of 1.0 everywhere,

seen as a straight line. With increasing turbulence, the

atmospheric MCF curves fall off rapidly to zero.
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(a) (b)

(c) (d)

Figure 4.4 Diffraction Patterns For A 100 mm Wide Square
Aperture For Four Different Values Of Turbulence:

(a) C.'-10-1' (b) Cal-10-15 (c) Cm'=10 - 1 4  (d) Cal=10 - 13 .

Displacement Of The Beam Centroid Is Obvious In (c) Due
To Low Frequency Tilting Of The Electric Field.
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D. COHERENCE LENGTH

The e-1 point of atmospheric NCF curves give the coherence

length, p0. In the simulation, we achieved this by a method

of linear interpolation as discussed previously. One should

not put too much faith in a statistical sample of one,

however. For this reason, a modification of the simulation

was made to run several samples of each different set of input

parameters so that a better statistical representation of

results occurred.

Theoretical coherence lengths were calculated from

Equation 2.41 [Ref. 1] for three different values of Cn2 using

R=1000 m and A=0.6 pm. Several runs of data were produced to

investigate the effect of different sizes of both the electric

field array and the aperture array. Calculated results are

discussed and displayed in following pages.

Figure 4.6 shows the trend for coherence length values as

a function of aperture array sample points using the classical

method of filtering for Cn2 = 10-13. Ten samples were obtained

for each data point. As discussed in section III, aliasing

makes the values of Po too high if there are too few sample

points. Using aperture arrays no larger than one-half the

width of the main array was done to avoid tilt problems. The

curves asymptotically approach coherence length values of 4.18

mm for the 512 x 512 array and 4.49 mm for the 256 x 256

array. These represent errors of 39.3% and 49.7%

respectively.

40



20

•... 12 by 512 array
ooooo 256 by 256 array

Theoretical coherence length

10
0

Aperture Sample Points (pixels)

Figure 4.6 Calculated Coherence Length Values For
Cn2 - 10 - 13 Using Different Aperture Array Sizes

And Classical Method Of Filtering.
Error Bars Shown Are For Case Of 512 By 512 Array Size,
Representing The Standard Deviation For Ten Samples.
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Figure 4.7 shows coherence length trends for Cn2 =

10 - 1 4 also using the classical method of filtering. Ten

samples were obtained for each data point. Results were 15.78

mm for the 512 x 512 array and 18.43 mm for the 256 x 256

array, representing errors of 32.1% and 54.2% respectively.

Figure 4.8 shows coherence length trends for CnI =

10-Is also using the classical method of filtering. Ten

samples were obtained for each data point. Results were 61.99

mm for the 512 x 512 array and 76.27 mm for the 256 x 256

array, representing errors of 23.3% and 60.3% respectively.

Figure 4.9 shows coherence length trends for Cn2 = 10-13

using the Martin and Flatt6 method of filtering. Ten samples

were obtained for each data point. Results were 4.07 mm for

the 512 x 512 array and 4.46 mm for the 256 x 256 array,

representing errors of 35.7% and 48.7% respectively.

Figure 4.10 shows coherence length trends for Cn2 = 10-14

also using the Martin and Flatt6 method of filtering. Ten

samples were obtained for each data point. Results were 14.94

mm for the 512 x 512 array and 20.46 mm for the 256 x 256

array, representing errors of 25.0% and 71.2% respectively.

Figure 4.11 shows coherence length trends for Cn2 = 10-15

also using the Martin and Flatt6 method of filtering. Ten

samples were obtained for each data point. Results were 60.74

mm for the 512 x 512 array and 74.04 mm for the 256 x 256

array, representing errors of 27.7% and 55.6% respectively.
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Figure 4.7 Calculated Coherence Length Values For

Cn2 = 10-14 Using Different Aperture Array Sizes

And Classical Method Of Filtering.
Error Bars Shown Are For Case Of 512 By 512 Array 

Size

Representing The Standard Deviation For Ten Samples.
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Figure 4.8 Calculated Coherence Length Values For
Cn2 = 10-15 Using Different Aperture Array Sizes

And Classical Method Of Filtering.
Error Bars Shown Are For Case Of 512 By 512 Array Size,
Representing The Standard Deviation For Ten Samples.
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Figure 4.9 Calculated Coherence Length Values For
Cn, - 10-13 Using Different Aperture Array Sizes

And Martin & Flatt6 Method Of Filtering.
Error Bars Shown Are For Case Of 512 By 512 Array Size,

Representing The Standard Deviation For Ten Samples.
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Figure 4.10 Calculated Coherence Length Values For
Cn2 = 10-4 Using Different Aperture Array Sizes

And Martin & Flatt6 Method Of Filtering.
Error Bars Shown Are For Case Of 512 By 512 Array Size,
Representing The Standard Deviation For Ten Samples.
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Figure 4.11 Calculated Coherence Length Values For
Cn2 = 10-1" Using Different Aperture Array Sizes

And Martin & Flatt6 Method Of Filtering.
Error Bars Shown Are For Case Of 512 By 512 Array Size,
Representing The Standard Deviation For Ten Samples.
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The most accurate results were obtained when the aperture

array was one-fourth the size of the electric field array, as

seen in Figures 4.6 through 4.11. For this reason all

subsequent coherence lengths were calculated using a 512 by

512 array with a 128 by 128 aperture array.

Figure 4.12 shows coherence length values calculated with

different values of turbulence using the classical method of

filtering. Ten samples were obtained for each calculated

value. Although the calculated coherence length values

deviated from theoretical values by approximately 30%, a

linear fit to the data shows that the slopes were correct,

implying a constant error in the algorithm due to

underestimating turbulence effects.

Adding a log-normal, random-amplitude screen to the GAUSS

subroutine was attempted to improve the simulation results for

coherence lengths. Having both phase and amplitude screens

present is equivalent to the complete Rytov approximation,

Equation 2.31. Eight samples were obtained for each

calculated value. Figure 4.13 dramatically shows that this

simple addition produced calculated coherence lengths that

were within 3% of theoretical values, from a linear fit to

the data.

Table 4.1 presents coherence lengths calculated by the

simulation using both random phase and amplitude screens in

the complete Rytov approximation. All data points were
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Figure 4.12 Calculated Coherence Length Values As A
Function Of Cn2 With Only Random Phase

Screen In The Simulation.
Calculated Values Are About 30% High For All Levels Of

Turbulence, From Linear Fit To The Data.
Error Bars Represent Standard Deviation For Ten Samples.
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Figure 4.13 Calculated Coherence Length Values As A
Function of Cn' With Both Random Phase And Amplitude

Screens In The Simulation.
Calculated Values Are About 3% High For All Levels Of

Turbulence, From Linear Fit To The Data.
Error Bars Represent Standard Deviation For Eight Samples.
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obtained using a 512 by 512 array and 128 by 128 aperture

array.

TABLE 4.1 COHERENCE LENGTHS

This table shows theoretical values of coherence lengths
calculated from Equation 2.39 for eight different values of
C02.

C 2
2 theoretical PO (mm) calculated p0 (min)

1 x 10-IS 47.57 50 * 30
2 x 10-I 31.39 30 * 20
5 x 10-15  18.11 14 ± 2
1 x 10-14  11.95 9 * 3
2 X 10- 1 4  7.88 7 2
5 x 10-1 4  4.55 4 * 1
1 x 10 -1 3  3.00 3 ± 1
2 x 10-13 1.98 2.0 • 0.4

E. INTENSITY VARIANCE SATURATION

The last checkpoint available for verifying proper

operation of the simulation was whether the code led to the

saturation of intensity variance for increasing turbulence.

This should happen because the Rytov assumption of an

exponential random term, exp(V), has a magnitude bounded by

plus or minus one. Figure 4.14 shows that saturation does

occur around Cn2 = 10-14 at a value of unity, as expected. The

normalized variance ) 1 present at this level of turbulence

is due to a "dancing" beam centroid caused by low frequency

tilt of the electric field as discussed previously. A decline

to unity normalized variance appears in the calculations for

higher turbulence values. (Ref. 12]
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Figure 4.14 Normalized Intensity Variance As
A Function Of Cnt.

Saturation Occurs Around Cn2 = 1O-14.
Large Variances Near Saturation Are Due To Beam

Centroid Displacement Cause By Low Frequency Tilt.
Error Bars Represent Standard Deviation For Ten Sam~ples.
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V. CONCLUSIONS

The program coding discussed in this thesis simulated the

propagation of optical waves through a random media using two-

dimensional fast Fourier transfurm (FFT) techniques. The

coding used Fraunhofer propagation throughout. An extension

to include multi-step Fresnel propagation is straightforward.

Aliasing problems in the FFT were avoided by taking sample

points closer together than the theoretical coherence length

for a given turbulence structure parameter, C02 . Tilt

problems in the FFT were suppressed by choosing the aperture

array no larger than one-half the size of the FFT array, with

one-fourth size giving the best results.

Accuracy of the simulation was verified at various

checkpoints within the coding. Aperture diffraction patterns

and autocorrelations were compared to expected results.

Turbulence effected diffraction patterns and atmospheric

mutual coherence functions were presented to show trends for

increasing turbulence. Calculated coherence length values

were approximately 30% larger than theoretical coherence

values when using a 512 by 512 FFT array with a 128 by 128

aperture array. These results were obtained with only a

Gaussian distributed random phase screen in the simulation.

The addition of a Gaussip distributed random amplitude

screen (for the complete Rytov approximation) to the
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simulation brought calculated coherence values to within 3%

of theoretical values. This showed that a numerical error was

not present in the coding, but that turbulence effects were

underestimated without the random amplitude term included.

A single step, Fraunhofer algorithm must include the amplitude

term to simulate turbulence effects on an optical wave

correctly. Unity saturation of the normalized intensity

variance occurred for C82 values of approximately 10-14.

Coherence length values used two types of filtering. The

classical method and the Martin and Flatt6 method gave

comparable results. The computational efficiency of the

Martin and Flatt6 is significant.

Future endeavors with this simulation should include the

incorporation of Fresnel propagation into the coding. Also,

further studies with the complete Rytov approximation in the

simulation code should be pursued to obtain better statistical

results.
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APPNDix A. RAnDOaNUMBER GEN]RATOR SUBROUTINE

subroutine RAM(iran,r)
c

c This is the random number generator algorithm from Dr.
c Harrison's notes, (Ref. 7).
c
c Variables:
c iran... input seed value (5 digit integer)

c r ...... returned random number uniformly distributed from 0 to 1
c

iran=iran*99947
r=0.5 + real(iran)*2.328306e-10

C

return
end

C-- -------------------------------------------------------------------- c
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APPUIDIX B. GAUSSIAN DISTRIBUTION SUBROUTINE

subroutine GAUSS(narray,iran)
c
c This subroutine changes uniformly distributed random numbers,
c provided by subroutine RAN, to Gaussian distributed random
c numbers with unity variance. This subroutine is found in
c Knuth, [Ref. 8].
c
c Variables:
c phaser ..... real phase screen 2-D array
c phasei ..... imaginary phase screen 2-D array
c narray ..... dimension of the 2-D arrays
c iran ....... input seed value for RAN (5 digit integer)
c r .......... uniformly distributed random numbers
c xl & x2 .... Gaussian distributed random numbers
C

common /blk2/phaser(512,512),phasei(512,512)
c

do 10 i=1,narray
do 10 j=1,narray

20 call RAN(iranr)
vl=2.*r-1.
call RAN(iran,r)
v2=2.*r-1.
s=vl*vl + v2*v2
if (s.ge.1.0) goto 20
scale-sqrt(-2.*alog(s)/s)
xl=vl*scale
x2=v2*scale
phaser(ij)=xl
phasei(ij)=x2

10 continue
c

return
end

c -----------------------------------------------------------c

56



IPPDIDI C. SnMUTION CODE

C-- -- --- - - ------- -- c
c This code simulates the propagation of a monochromatic optical
c wave in a turbulent atmosphere. Two-dimensional FMT routines
c are used extensively for calculations. Only Fraunhofer
c propagation is present in the coding. Filtering is accomplished
c by a choice of two methods: (1) classical and (2) the Martin
c and Flatt6 method.
c
c Subroutines:
c INIT ..... Sets electric field arrays to zero. A value of 0
c in the call initializes real and imaginary arrays.
c A value of 1 initializes only the imaginary array.
c SQUARE...Establishes the planar electric field for the case
c of a square aperture.
c CIRCLE...Establishes the planar electric field for the case
c of a circular aperture.
c PLOT ..... Gives a screen plot of the array chosen in the call
c using EGA graphics. Different colors are chosen to
c represent different orders of magnitude values. Most
c calls within this subroutine are NDP Fortran-386
c specific.
c XFORM .... Takes the 2-D FFT of the two arrays given in the call.
c Returns values in the same arrays. Makes calls to
c subroutine FMT (1-D FMT routine) several times. A
c value of -1 in the call is for a direct transform.
c A value of +1 in the call is for an inverse transform.
c FFT ...... 1-D FFT routine supplied by Dr. Don Walters. This
c routine is used by subroutine XFORM multiple times
c to accomplish the 2-D transform.
c This is Dr. Walters FFT
c NAG ...... Calculates the electric field magnitude and the
c intensity field from the real and imaginary electric
c field arrays.
c MCFPLOT..Calculates the Mutual Coherence Function (MCF) from
c the intensity field and then plots it on the screen
c using EGA graphics. Many calls within this
c subroutine are NDP Fortran-386 specific.
c GAUSS .... Creates the phase screens from Gaussian distributed
c random numbers with unit variance. Makes calls
c to subroutine RAN for uniformly distributed random
c numbers then transforms then to a Gaussian distribution.
c Elements of this subroutine provided by Knuth. (Ref. 8]
c RAN ...... Generates uniformly distributed random numbers. This
c algorithm from Harrison [Ref. 7]
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c FILTER...Filters the phase screens according to the Kolmogorov
c power law. A shuffling of array values is necessary
c for proper filtering.
c MESH ..... Neshes the random phase screen with the electric
c field.
c
c Variables:
c fieldr...Real 2-D electric field array.
c fieldi...Imaginary 2-D electric field array.
c fieldro..Real 2-D planar electric field at aperture.
c phaser...Real 2-D phase screen array.
c phasei...Imaginary 2-D phase screen array.
c fieldm...2-D array that represents the electric field magnitude.
c fielda2..2-D array that represents the intensity field.
c narray...Dimension of electric field array
c nfield...Dimension of aperture array
c iran ..... Input seed for random number generator (5 digit integer).
c cn2 ...... Refractive index structure parameter.
c wvl ...... Wavelength of monochromatic electromagnetic wave.
c delz ..... Physical distance between aperture plane and image plane.
c width .... Physical width of aperture plane.
c delx ..... Physical distance between sample points in aperture

array.
c rhonot...Coherence length calculated by interpolation between
c points of NCF curve.
c re ....... Real 1-D array used by subroutine IFT.
c rim ...... Imaginary 1-D array used by subroutine FMT.
c fphaser..Real 2-D array used in subroutine FILTER that represents
c the phase screen in a sore convenient form for
c filtering and viewing.
c fphasei..Inaginary 2-D array used in subroutine FILTER that
c represents the phase screen in a more convenient form
c for filtering and viewing.
C

c
common /blkl/fieldr(512,512),fieldro(512,512),fieldi(512,512)
common /blk2/phaser(512,512),phasei(512,512)
common /blk3/fieldm(512,512),fielda2(512,512)

c
c Initialize arrays
c

1 call INIT(narray,O)
c
c Input section
c

write(*,*) 'Enter dimension of array that required.'
read(*,*) narray
write(*,*) 'Enter dimension of planar electric field.'
write(*,*) '(Pixel width of the aperture)'
read(*,*) nfield

2 write(*,*) 'Choose aperture shape: 1) SQUARE'
write(*,*) ' 2) CIRCLE'
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read(*,*) ichoice
if (ichoice Alt. 1 .or. ichoice .gt. 2) then
write(*,*) 'Try again!'
goto 2

endif
write(*,*) 'Enter the seed for the random number generator.'
write(*,*) '(Value must be a five digit integer)
read(*,*) iran
write(*,*) 'Enter the value of Ca squared.'
read(*,*) cn2
write(*,*) 'Enter the wavelength of light.'
read(*,*) wvl
write(*,*) 'Enter the distance from aperture to observer.'
read(*,*) delz
delz=1000.
write(*,*) 'Enter the width of the aperture in meters.'
read(*,*) width

C

delx-wvidth/real (nfield)
C

c L6oad arrays with desired planar electric field
c

if (ichoice .eq. 1) call SQUARE(narray,nfield)
if (ichoice .eq. 2) call CIRCLE(narray,nfield)

c

c Plot planar electric field
c

call PLOT(fieldr,narray,1)
c

c Take Fourier transform of the field
C

call XFORH(fieldr,fieldinarray,delx,-1.)
C

c Calculate magnitude of transformed field then plot it
C

call HAG(narray)
c

call PLOT(fields,narray,l)
c
c Set imaginary portion of field to zero
C

call INIT(narray,l)
C

c Take Fourier transform of field intensity
c

call XFORN(fieldm2,fieldi,narray,delx,+l.)
c
c Calculate and plot KCF of aperture
c

call NCFPLOT(narray,delx,nfield,O)
c
c Load phase screen arrays with C ssian random numbers
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C

call GAUSS (narray1 iran)
c
c Transform phase screen to frequency space
C

call XFORN(phaser,pbasei,narraysqrt(real (narray)) ,-l.)
c call PLOT(phaser,narray,1)
c call PLOT(phasei,narray,l)

c Filter phase screen using Kolmogorov spectrum idea
C

call FILTER (narray,cn2,vvl,delx,delz)
c call PLOT(phasernarray,1)
c call PLOT(phasei,narray1l)
C

c Transform phase screen back to real space
c

call XFORM(phaser,phaseinarray,sqrt (real (narray) *delx) ,+1.)
c call PLOT(phaser,narray,l)
c call PLOT(phasei~narray,l)
c
c Mesh phase screen with planar electric field
c

call INIT(narray,l)
call !ESH(narray)

c
call PLOT(fieldr,narray,l)

C

c Take fourier transform of this electric field
c

call XFORN(fieldr,fieldi,narray,delx,-1.)
C

call MAG(narray)
c

call PLOT(fieldn,narray,l)
C

c Reset imaginary portion of field to zero
c

call INIT(narray,l)
c
c Take Fourier transform to get diffraction pattern w/ turbulence.
C

call XFORN(fieldu2,fieldi,narray,delx,+l.)
c
c Calculate atmospheric MCF and plot it.
c

call MCFPLOT(narray,delx,nfieldl)
c

goto I
stop
end



c --------- -c------------------------
subroutine Iull'(narray, k)

C

common /blkl/fieldr(512,512) ,fieldro(512,512) ,fieldi(512,512)
C do 10 i=l1narray

do 10 jizinarray
if (k .eq. 0) then

fieldr (i,j)=0.0
fieldro(ij)=0.0

endif
fieldi(i,j)=0.0

10 continue
C

return
end

c--------------------------------------------------------------- c
subroutine NAG (narray)

C

common /blkl/fieldr(512,512),fieldro(512,512),fieldi(512,512)
common /blk3/fieldm(512,512) ,fieldm2(512,512)

C

do 10 i=l,narray
do 10 j=1,narray

fieldm2(i,j)=fieldr(i,j)**2 + fieldi(i,j)**2
tieldm(i,j)=sqrt (fieldm2(i,j))

10 continue
c

return
end

c------------------------------------------------------------------------------ C

subroutine SQUARE(narray,nfield)
C

common /blkl/fieldr(512,512) ,fieldro(512,512) ,fieldi (512,512)
C

do 10 i=narrayf2+1-nfieldf2,narray/2+nfield/2
do 10 j=narray/2+1-nfield/2,narray/2+nfield/2

fieldr(i~j)=1.0
fieldro(i,j)=1.0

10 continue
C

return
end

c--------------------------------------------------------------- C
subroutine CIRCLE~narray,nfield)

c

common /blkl/fieldr(512,512) ,fieldro(512,5l2),fieldi(512,512)
narray2-narray/2
nfield2-nfield/2

C

do 10 i=narray2+1-nfield2,narray2+nfield2
do 20 j=narray2+1-nfield2,narray2+nfield2
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radius2= (real (i) -real (narray2) )**2 +
* ~(real (j) -real (narray2) )**2
if (radius2 Alt. real(nfield2)**2) then
fieldr(ij)=1.0
fieldroftij)-1.0

endif
20 continue
10 continue

C

return
end

C------------------------------------------------------------------------- C

subroutine PLOT(field,narrayk)
C

dimension field(512,512)
dimension ndex (20)
data ndex/4,4,12,12,14,14,10,10,2,2,3,3,9,9,1,1,8,8,0,0/

C

fmax=0.0
do 100 i=1,narray

do 100 3.-1,narray
x=field(i,j)
if (x.gt.fmax) then

fmax~x
endif

100 continue
C

call set video mode(16)
call ega-set-mode-4

C

do 110 i=1,narray/k
do 110 j=1narray/k

ix=i
iy~j
xnax=aloglO (field (i, j)If max)
index=8*abs (xmax) +1
if (index.ge.21) then

icolor-0
else

icolor=ndex (index)
endif
call egaputjpixel (ix, jy, icolor)

110 continue
c

call pause
call set-video mode (3)

c
return
end

C------------------------------------------------------------------------------ C

subroutine KCFPLOI'(narray,delx,nfieldiaprture)
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C

common /blk3/fieldm(512,512) ,fieldm2(512,512)
dimension apacf (513) ,ycf (513)
logical flag
efold=0.36787944
rhonot=0.
flag-. true.

c
do 10 i=1,513
if (iaprture .eq. 0) then

apmcf (i)=0.0
endif
ymcf (i)=0.0

10 continue
c

fmcf =0.0
do 20 i=1,narray

do 20 j=1,narray
xncf=field&2 (i,j)
if (xacf.gt.fmcf) then

facf=xmcf
endif

20 continue
c

do 30 i=l,nfield
if (iaprture .eq. 0) then

apact (i)=fieldn2(l1i) /fmcf
ymcf (i)=apmcf (i)

else
yucf (i)=fieldm2(l,i)/(apmcf (i)*fmcf)

endif
30 continue

C

do 40 i=1,nfield
if (iaprture.eq.1) then
if (flag) then
if (yacf(i).lt.efold) then

rhonot=real (i-i) *delx
* + (efold-ymcf (i))*delx/(ymcf (i-l)-yucf (i))

flag=.false.
endif

endif
endif

40 continue
c

call set -video -mode(16)
call ega -set -modej
call locate(20,1)
if (iaprture .eq. 0) then

call write string('Aperture MCY vs. Length')
else

call write-string('Atmospheric MCF vs. Length')
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endif
call locate(1,1)
call write..string( '1.0')
call locate(25,24)
call vrite-string( 'length')

c call locate(37,24)
c call write..string(nfield)

call ega-draw-ine(40,20,40,320,15)
call ega-drawvjine(40,320,600,320,15)

C

ixW4O
iy=20
do 50 i=1,nfield

ix2=404560*i Infield
i72=20+int (300. *(1 .-ymcf(ifi))
call ega-drav_ line (ix, iy, ix2, iy2, 15)
ix=ix2
iyu-iy2

50 continue
C

call pause
call set video mode (3)

C

write(*,*) 'The coherence length is ',rhonot,' meters.'
C

return
end

C------------------------------------------------------------------------------ C

subroutine XFORN(fieldr,fieldi,narray,fftnorm,sign)
C

common /blk4/re(512) ,rim(512)
dimension fieldr (512,512) ,fieldi (512,512)
data re/512*0./,rim/512*0./

C

m=int (alog (real (narray) )/alog (2.))
C

do 30 i=lnarray
do 40 j=1,narray

re(j)=fieldr(i,j)
rimWj=fieldiUi,j)

40 continue
call FFT(m,fftnorm,sign)
do 50 j=1,narray

fieldr(i,j)=re(j)
fieldi(i,j)=rim(j)

50 continue
30 continue

do 60 j=1,narray
do 70 i=1,narray

re(i)-fieldr(i,j)
rim(i)=tieldi (i,j)
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70 continue
call FF(nmfftnorm,sign)
do 80 iminarray

fieldr(i,j)-re(i)
fieldi(iji)-rim(i)

80 continue
60 continue

c
return
end

C------------------------------------------------------------------------- C
subroutine FFT(a, fftnors,sign)

C
comon /blkt/re(512),rim(512)
pi=3 .141592653589792*sign
n=2**a
nl=n-1
j=1
do 200 i=1,nl
if (i.lt.j) then

t=re (j)
re(j)=re(i)
re(i)-t
t=rim(j)
rin(j)=rim(i)
rim(i)=t

endif
kn/2
do 201 while (k.lt.j)

j=j-k
k=k/2

201 continue
j=j+k

200 continue
le= 1
do 202 1=1,m

lel=le
le=le+le
ure=1.
uin=0.
ang=pi/lel
vre-cos (ang)
viu=sin (ang)
do 203 j=l,lel

do 204 i=j,n,le
ip-i +1 e1
tre-re(ip) *ure-rim(ip) *ujm
timmre (ip) *ujm+rim (ip) *ure
re (ip)=-re M)-tre
rim(ip)-rim(i) -tim
re(i)=re(i)+tre
rim (i)=rim(i)+tim
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204 continue
t-ure*wre-uin*wim
uin-ure*Via+uia*vre
ure=t

203 continue
202 continue

if (sign.gt.0.0) then
pts=1.0/real (n~fftnorn)

else
pts=fftnorm

endif
do 205 i=1,n

re(i)=re(i) *pts
rim(i)=rim(i) *pts

205 continue
C

return
end

C------------------------------------------------------------------------------ C

subroutine GAUSS (narray, iran)
C

common fblk2/phaser(512,512) ,phasei (512,512)
C

do 10 i=1,narray
do 10 j=1,narray

20 call RAN(iran,r)
vl=2.*r-1.
call RAN(iran,r)
v2-2.*r-1.
s=vl*vl + v2*v2
if (s.ge.1.O) goto 20
scale=sqrt (-2.*alog(s) Is)
xl=vl*scale
x2=v2*scale
phaser (i,j)=xl
phasei(i,j)=x2

10 continue
C

return
end

c--------------------------------------------------------------- C
subroutine RAN(iran,r)

C

kran-99947

iran-iran*kran
r-0..5 + real(iran)*2.328306e-10

C

return
end

C------------------------------------------------------------------------------ C

subroutine FILTER(narraycn2,wvl,delx,delz)
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c

common /blk2/phaser(512, 512) ,phasei (512,512)
dimension fphaser(512,512) ,fphasei(512,512)
dimension aaa (512,512)
pi=3 .141592653589792
tpi-2 .*pj
narray2-narray/ 2
npivot=narray2+1
power=-11 .16.
factor-sqrt (1.303*(tpi**3)*cn2*delz)/vvl
factor2= (tpi/real (delx*narray) )**pover

C

do 10 i=l,narray
do 10 jal,narray

fpbaser (i,j)=0.
fphasei (i,j)=0.

10 continue
C

do 20 i=1,narray
do 20 j=l,narray
if (i.le.npivot) then
if (j.le.upivot) then

fphaser (i-1+narray2, j-l+narray2) =phaser (i i)
fphasei (i-1+narray2,j-1+narray2)=phasei (iij)

else
fphaser (i-1+narray2, j-1-narray2) -phaser (i, i)
fphasei (i-l+narray2,j-1-narray2) -phasei (i j)

endif
else
if (j.le.bpivot) then

fphaser(i-1-narray2,j-1+narray2)=phaser(i,j)
fphasei (i-l-narray2,j-1+narray2)=phasei (i,j)

else
fphaser (i-1-narray2, j-1-narray2) =phaser (i i)
fphasei (i-l-narray2, j-1-narray2) =phasei (i i)

endif
endif

20 continue
c

do 30 i=1,narray
do 30 j=1,narray

freq=sqrt(real(i-narray2)**2 + real(j-narray2)**2)
if (i.eq.narray2.and.j.eq.narray2) then
f phaser (ij)=0.
fphasei (i,j)=0.

else
fphaser (i, j)=fphaser (i, i)*f actor'f actor2* (freq) **Power
fphasei (i i) =fphasei (i j) *f actor*factor2* (freq) **power

endif
30 continue
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C
do 40 i-1,narray

do 40 j=1narray
if (i.lt.narray2) then
if (j.lt.narray2) then

phaser(i+l*narray2,j+14raarray2)-fphaser (iij)
phasei (i+1+narray2,j+1+narray2) =fphasei (i gj)

else
phaser (i+1+narray2, j+1-narray2)=f phaser (i, i)
phasei(i+1+narray2,j+l-narray2)-fphasei (i,j)

endif
else
if (j.lt.narray2) then

phaser (i+1-narray2, j+1+narray2) -fphaser (i, i)
phasei (i+1-narray2,j+1+narray2)=fphasei(i,j)

else
phaser (i+1-narray2, j+1-narray2) =f phaser (ilj)
phasei (i+l-narray2. j+1-narray2) =fphasei (i, i)

endif
endif

40 continue
c

return
end

C------------------------------------------------------------------------------ C

subroutine MESH (narray)
C

comon /blkl/fieldr(512,512) ,fieldro(512,512),fieldi(512,512)
comon /blk2/phaser(512,512) ,phasei (512,512)

c

do 10 i=1,narray
do 10 j=I,narray

ercosphi-fieldro(i,j)*cos(phaser(i,j) )*exp(phasei (i,j))
eicosphi-fieldi (i, i) *co5(phaser (i,j) ) *exp (phasei (i, i))
ersinphi=fieldro(i,j)*sin(pbaser(ij))*exp(phasei(i,j))
eisinphi=fieldi(i,j)*sin(phaser(i,j) )*exp(phasei(i,j))
fieldr (i j) =ercosphi-eisinphi
fieldi (i,ji) =ersinphi+eicosphi

10 continue
C

return
end
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